Patricia Lakin-Thomas

PhD (University of California, San Diego)
Lab Website:
Research areas: Cell Biology, Chronobiology

Research Focus

My research is aimed at answering this question: How do living things tell time? I am interested in circadian rhythms, the daily activity cycles driven by internal clocks in all eukaryotes and some prokaryotes. The goal of my research is to describe the mechanism of a circadian clock at the molecular and biochemical level. Because circadian rhythmicity is a fundamental property of all eukaryotic cells, an understanding of the mechanism of rhythmicity will give us important insights into how cells function.

I work with the filamentous fungus Neurospora crassa, a model organism that is at the forefront of circadian rhythm research. We use the rhythm of spore-formation (conidiation) as a visible marker for the state of the internal clock. Previous research has shown that the FRQ, WC-1 and WC-2 proteins are important for rhythmicity in Neurospora, but recent work has shown that conidiation rhythms can continue in their absence. I am interested in finding the oscillator that drives rhythmicity in the absence of FRQ (the FRQ-less oscillator, or FLO).

I have found that a mutation in lipid metabolism, chol-1, reveals rhythmicity in FRQ-less strains growing in constant conditions. I have also demonstrated that cycles of heat pulses reveal the existence of the FLO in FRQ-less strains without the chol-1 mutation. We are using these conditions as tools to visualize FRQ-less rhythms and assay the functioning of the FRQ-less oscillator. Our current goal is to identify the components of the FLO, determine how they interact to produce an oscillator mechanism, and determine how that oscillator interacts with the FRQ/WCC oscillator.

My lab’s strategy is to search for genes that affect the FLO, by using standard genetics to introduce known clock mutations into FRQ-less strains, and by mutagenesis to create new mutations affecting FLO. We have identified several mutations that disrupt FLO and we are characterizing these new FLO-affecting genes. We have mapped and identified two of these genes, and we are now carrying out functional analyses to determine where and when the products of these genes are expressed, and what proteins they interact with. We are also looking at the effects of our FLO-affecting mutations on the expression of clock-controlled genes and biochemical rhythms, and on the function of the FRQ/WC oscillator.

Representative publications:

Lakin-Thomas, P. Circadian rhythms, metabolic oscillators, and the target of rapamycin (TOR) pathway: the Neurospora connection. (2019) Current Genetics, 65 (2), pp. 339-349.
DOI: 10.1007/s00294-018-0897-6

Ratnayake, L., Adhvaryu, K.K., Kafes, E., Motavaze, K., Lakin-Thomas, P. A component of the TOR (Target Of Rapamycin) nutrient-sensing pathway plays a role in circadian rhythmicity in Neurospora crassa. (2018) PLoS Genetics, 14 (6), art. no. e1007457.
DOI: 10.1371/journal.pgen.1007457

Adhvaryu, K., Firoozi, G., Motavaze, K., Lakin-Thomas, P. PRD-1, a component of the circadian system of Neurospora crassa, is a member of the DEAD-box RNA helicase family. (2016) Journal of Biological Rhythms, 31 (3), pp. 258-271.
DOI: 10.1177/0748730416639717

Li, S., Motavaze, K., Kafes, E., Suntharalingam, S., Lakin-Thomas, P. A new mutation affecting FRQ-less rhythms in the circadian system of Neurospora crassa. (2011) PLoS Genetics, 7 (6), art. no. e1002151.
DOI: 10.1371/journal.pgen.1002151

Li, S., Lakin-Thomas, P. Effects of PRD circadian clock mutations on FRQ-less rhythms in Neurospora. (2010) Journal of Biological Rhythms, 25 (2), pp. 71-80.
DOI: 10.1177/0748730409360889

Lakin-Thomas, P.L. Transcriptional feedback oscillators: Maybe, maybe not... (2006) Journal of Biological Rhythms, 21 (2), pp. 83-92.
DOI: 10.1177/0748730405286102